skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lynn, Jeffrey W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Kagome lattice magnets are an interesting class of materials as they can host topological properties in their magnetic and electronic structures. YMn6Sn6is one such compound in which various exotic magnetic and electronic topological properties have been realized. Here, by means of a partial substitution of Sn with an isovalent and slightly smaller atom Ge, we demonstrate the sensitivity of such chemical substitution on the magnetic structure and its influence in the electronic properties. Magnetic structure of YMn6Sn4Ge2determined by neutron diffraction reveals an incommensurate staggered magnetic spiral with a slightly larger spiral pitch than in YMn6Sn6. This change in magnetic structure influences the Fermi surface enhancing the out-of-plane conductivity. Such a sensitivity to the partial chemical substitution provides a great potential for engineering the magnetic phases and associated electronic properties not only in YMn6Sn6, but also in the large family of 166 rare-earth kagome magnet. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. null (Ed.)
    Abstract The spin- $$\frac{1}{2}$$ 1 2 kagome antiferromagnet is considered an ideal host for a quantum spin liquid (QSL) ground state. We find that when the bonds of the kagome lattice are modulated with a periodic pattern, new quantum ground states emerge. Newly synthesized crystalline barlowite (Cu 4 (OH) 6 FBr) and Zn-substituted barlowite demonstrate the delicate interplay between singlet states and spin order on the spin- $$\frac{1}{2}$$ 1 2 kagome lattice. Comprehensive structural measurements demonstrate that our new variant of barlowite maintains hexagonal symmetry at low temperatures with an arrangement of distorted and undistorted kagome triangles, for which numerical simulations predict a pinwheel valence bond crystal (VBC) state instead of a QSL. The presence of interlayer spins eventually leads to an interesting pinwheel q  = 0 magnetic order. Partially Zn-substituted barlowite (Cu 3.44 Zn 0.56 (OH) 6 FBr) has an ideal kagome lattice and shows QSL behavior, indicating a surprising robustness of the QSL against interlayer impurities. The magnetic susceptibility is similar to that of herbertsmithite, even though the Cu 2+ impurities are above the percolation threshold for the interlayer lattice and they couple more strongly to the nearest kagome moment. This system is a unique playground displaying QSL, VBC, and spin order, furthering our understanding of these highly competitive quantum states. 
    more » « less
  3. In materials with broken time-reversal symmetry, the Berry curvature acts as a recip- rocal space magnetic field on the conduction electrons and is a significant contribution to the magnetotransport properties, including the intrinsic anomalous Hall effect. Here, we report neutron diffraction, transport, and magnetization measurements of thin films of doped EuTiO3, an itinerant magnetic material, as a function of carrier density and magnetic field. These films are itinerant antiferromagnets at all doping concentrations. At low carrier densities, the magnetoresistance indicates a metamag- netic transition, which is absent at high carrier densities (>6 × 1020 cm-3). Strikingly, the crossover coincides with a sign change in the spontaneous Hall effects, indicating a sign change in the Berry curvature. We discuss the results in the context of the band structure topology and its coupling to the magnetic texture. 
    more » « less